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Abstract

We consider the averaging method for stability of rapidly switching linear systems with distur-

bances. We show that the notions of strong and weak averages proposed in [1], with partial strong

average defined in this paper, play an important role in the context of switched systems. Using

these notions of average, we show that exponential ISS of the strong and the partial strong average

system with linear gain imply exponential ISS with linear gain of the actual system. Similarly,

exponential ISS of the weak average guarantees an appropriate exponential derivative ISS (DISS)

property for the actual system. Moreover, using the Lyapunov method, we show that linear ISS

gains of the actual system and its average converge to each other as the switching rate is increased.

1 Introduction

Switched systems have been used extensively in various areas of control engineering, such as mechanical

systems, automotive industry, aircraft control and power electronics [2, 3]. Switched systems are

dynamical systems governed by differential equations whose right hand side is selected from a given

family of functions based on some switching rule. The stability properties of the systems with fast

switching behavior have been considered recently, where averaging plays an important role. These

averaging results were used in applications of such as network stability analysis, synchronization of

chaotic oscillators and control of multiple autonomous agents [4–6]. In particular, [5,6] investigate the

exponential stability of fast switching linear switched systems via averaging, and the same authors

analyze the finite L2 gain for systems with inputs [7].

Our results are closely related to the recent averaging techniques for continuous-time systems with

disturbances in [1] where ISS is investigated. Although results in [1] are not written to deal exclusively

with switched systems, they are general enough to include as a special case nonlinear switched systems.

However, their conclusions are too weak whenever the ISS disturbance gain is linear and the decay of

transients is exponential. Such situation often arises in linear switched systems and, hence, there is a

strong motivation for sharpening the results in [1] to this important situation.
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With the notions of strong and weak averages pioneered in [1] and partial strong average that we

propose here, we derive main results when the average system is ISS with an exponential KL estimate

and a linear gain. We show that exponential ISS of the strong average implies exponential ISS with

linear gain for the actual linear switched system for sufficiently high switching rates. We also show

that if the weak average is exponentially ISS with linear gain, then the actual linear switched system

satisfies an exponential DISS property. In addition, with partial averaging that has been used to

study the stability properties for continuous time varying nonlinear systems [8], we present stronger

conclusions when there does not exist a strong average. The partial strong average is defined in the

present paper to show that its exponential ISS implies exponential ISS properties for the actual system

when switching is fast enough. Moreover, based on the Lyapunov method, we show that the linear ISS

gain of the actual system converges to the ISS gain of its average as the switching rate is increased.

These new results provide novel insights on robustness in the context of linear switched systems, and

we believe that these average notions will play an important role in future developments of averaging

methodology for switched systems with disturbances.

The paper is organized as follows. Definitions and preliminary results are presented in Section 2.

Sections 3 and 4 contain main results and their application to the cascaded systems. A summary is

given in the last section and the proofs are presented in the Appendix.

2 Preliminaries

A function γ̃ : R≥0 → R≥0 is of class-K if it is zero at zero, continuous and strictly increasing. A

continuous function σ : R≥0 → R≥0 is of class-L if it is converging to zero as its argument grows

unbounded. A continuous function β : R≥0 ×R≥0 → R≥0 is of class-KL if it is of class-K in its first

argument, and class-L in its second argument, and a class-KL function β(·, s) is called exponential

if β(r, s) = Kr exp(−λs) for some K > 0, λ > 0. λmin(·) and λmax(·) are the minimum and the

maximum eigenvalue of a matrix, respectively. Given a measurable function w, we define its infinity

norm as ||w||∞ := ess supt≥0 |w(t)|. If we have ||w||∞ < ∞, then we write w ∈ L∞. | · | denotes the

vector norm.

We consider linear fast switching systems that depend on a small parameter ε > 0,

ẋ = Aρ( t
ε )x+Bρ( t

ε )w (1)

where x ∈ Rn is the state, w ∈ Rm is the input, (Ai, Bi) is a family of constant matrices that is

parameterized by some index i ∈ S , {1, 2, · · · , N}, ρ : R≥0 → S is a piecewise constant function

of time, called a switching signal. Given ρ
(
t
ε

)
, suppose that for every ε there exists ν := ν(ε) > 0

such that the interval between consecutive switching times is not smaller than ν. Note that the
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switching rate increases as the parameter ε decreases, but for any fixed and arbitrarily small ε, the

above assumption guarantees that we do not have Zeno solutions.

We also consider a more general class of linear fast switching systems

ẋ = Aρ1( t
ε )x+Bρ2(t,ε)w, (2)

where ρ2 is a function of (t, ε) with the form t
ε being a special case. We first recall the definition of

weak and strong averages for nonlinear systems ẋ = f(t, x, w) (introduced in [1]) and define the partial

strong average for the system ẋ = fp( tε , t, x, w, ε). Then, in Definition 4, we will introduce the notion

of average for switched matrices and use it to generate various type of averages in Definitions 1-3 for

linear switched systems (1).

Definition 1 (Weak Average) A locally Lipschitz function fwa : Rn × Rm → Rn is said to be a weak

average of f if there exists βav ∈ KL and T ∗ > 0 such that ∀ t ≥ 0, ∀ T ≥ T ∗, ∀ w ∈ Rm, and

∀ x ∈ Rn, the following holds:

∣∣∣∣∣fwa(x,w)− 1
T

∫ t+T

t

f(s, x, w)ds

∣∣∣∣∣ ≤ βav(max{|x|, |w|, 1}, T ). (3)

Definition 2 (Strong Average) A locally Lipschitz function fsa : Rn×Rm → Rn is said to be a strong

average of f if there exists βav ∈ KL and T ∗ > 0 such that ∀ t ≥ 0, ∀ T ≥ T ∗, ∀ w ∈ L∞, and

∀ x ∈ Rn, the following holds:

∣∣∣∣∣ 1
T

∫ t+T

t

[fsa(x,w(s))− f(s, x, w(s))]ds

∣∣∣∣∣ ≤ βav(max{|x|, ||w||∞, 1}, T ). (4)

Definition 3 (Partial Strong Average) A locally Lipschitz function fpsa : R≥0 × Rn × Rm → Rn is

said to be a partial strong average of fp if there exists βav ∈ KL and T ∗ > 0 such that ∀ t ≥ 0,

∀ T ≥ T ∗, ∀ w ∈ L∞, and ∀ x ∈ Rn, the following holds:

∣∣∣∣∣ 1
T

∫ t+T

t

[
fpsa(t, x, w(s))− fp

(s
ε
, t, x, w(s), ε

)]
ds

∣∣∣∣∣ ≤ βav(max{|x|, ||w||∞, 1}, T ). (5)

Remark 1 Note that the main difference between the weak and the strong average is that in the defi-

nition of weak average the disturbance is kept constant in (3) whereas for strong average the inequality

(4) needs to hold for all disturbances w ∈ L∞. A complete characterization of strong averages for

continuous-time systems was given in [1], where it is shown that any f(t, x, w) that is periodic in t

has a strong average if and only if the function f has the structure as f(t, x, w) = f1(t, x) + f2(x,w)

and there exists the average fav(x) for f1(t, x) according to either strong or weak average definition

(they coincide as f1 does not depend on disturbances). Then, fsa(x,w) := fav(x) + f2(x,w) satisfies
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the strong average definition.

We next present, the definition of average for switched matrices that is used to define strong,

partial strong and weak average systems for the linear switched system (1).

Definition 4 (Average for switched matrices) A constant matrix Aav is said to be an average of Aρ(t)

if for the switching function ρ, there exist a class-L function σ and positive real numbers k and T ∗,

such that ∀t ≥ 0, ∀T ≥ T ∗, the following holds:

∣∣∣∣∣Aav − 1
T

∫ t+T

t

Aρ(s)ds

∣∣∣∣∣ ≤ kσ(T ). (6)

Remark 2 Note that the average of switched matrices does not necessarily imply that ρ(·) : R≥0 → S

is periodic. On the other hand, suppose that ρ(·) is periodic of period T. It can be shown that the average

matrix defined as Aav = 1
T

∫ T
0
Aρ(t)dt satisfies Definition 4 for some k and σ. Let Ti be the length of

time during one period for which ρ(t) = i. Then, it is not hard to see that Aav = 1
T

∑
iAiTi =

∑
i λiAi,

where by definition λi = Ti/T and
∑
i λi = 1.

Using the definition of averages for switched matrices, we will concentrate on the strong and the

weak averages for system (1) and the partial strong average for system (2). In particular, it can be

shown that if Aav and Bav are respectively averages of Aρ(t) and Bρ(t) in (1) under Definition 4, the

system ẋ = Aavx + Bavw satisfies the weak average definition. On the other hand, if we have that

Bi = B for all i ∈ {1, 2, · · · , N}, then the system ẋ = Aavx + Bw satisfies the definition of strong

average in Definition 2. Finally, we will also consider the system ẋ = Aavx+Bρ2(t,ε)w. It is not hard

to show that this system is a partial strong average of system (2) under Definition 3.

Remark 3 All the notions of strong, partial strong and weak averages are useful in different situations

and we investigate all of them. It was shown in [1] for continuous-time systems that strong averages

exist for a smaller class of systems but using them we can state stronger stability results (see Theorem

2), while weak averages exist for a larger class of systems but using them we can state weaker stability

results (see Theorem 1). In particular, weak averages are found useful when one deals with ISS of

cascaded systems (see Section 4). The definition of partial strong average is not considered in [1],

and it appears to be novel in the context of switched systems. However, it can apply to more general

systems (2) when there does not exist an average for Bρ2(t,ε). Moreover, noting that system (1) is a

special case of system (2), we show in Theorem 3 that the notion of partial strong average is useful

to conclude ISS for system (1) in cases when a strong average does not exist and weak average would

give too weak conclusions (i.e. DISS).

From Remark 1, we know that existence of the strong average always implies existence of weak

average. The opposite does not hold as the following example illustrates.
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Example 1 Consider the linear switched system (1). The switching law ρ( tε ) selects elements of the

set S = {1, 2} according to the policy

ρ

(
t

ε

)
=

 1 t
ε ∈

[
nπ, (2n+1)π

2

)
2 t

ε ∈
[

(2n+1)π
2 , (n+ 1)π

)
,

where n ∈ N≥0. Let A1 = A2 := −0.5, B1 = 1, and B2 = −1. From Definition 1 and Remark 2, we

know that the weak average of this system is ẏ = −0.5y.

Now, we will show that there does not exist a strong average for system (1). Pick an arbitrary

x̄ 6= 0 and note that, for any given function fsa(x,w), we have two possibilities:

a. either fsa(x̄, w) + 0.5x̄ = 0, ∀w, or b. ∃w̄, such that fsa(x̄, w̄) + 0.5x̄ 6= 0.

Suppose fsa is the strong average for system (1) and case a holds. Let w(t) = Bρ(t), we have

∣∣∣∣∣ 1
T

∫ t+T

t

(
Bρ(s)

)2
ds

∣∣∣∣∣ =

∣∣∣∣∣ 1
T

∫ t+T

t

1 ds

∣∣∣∣∣ = 1 ∀T > 0.

Suppose that fsa is the strong average for system (1) and case b holds. Pick w(t) = w̄ and set T = Cπ

for C ∈ N, through simple calculation one gets

∣∣∣∣∣ 1
T

∫ t+T

t

{fsa(x̄, w̄) + 0.5x̄−Bρ(s)w̄}ds

∣∣∣∣∣ = |fsa(x̄, w̄) + 0.5x̄| > 0 ∀C > 0,

which does not converge to zero as C approaches infinity, in other words as T →∞. Thus, there does

not exist a strong average for system (1).

In order to state our main results, we need the definition of exponential-ISS with linear disturbance

gain (see Section 4.9 [9]).

Definition 5 The system ẋ = fa(t, x, w) is said to be exponentially ISS with linear gain γ if there

exist positive constants K,λ such that, for all t0 ∈ R≥0, w ∈ L∞ and each x0 := x(t0) ∈ Rn, the

solution of the system starting at (x0, t0) exists for all t ≥ t0 and satisfies

|x(t)| ≤ K exp(−λ(t− t0))|x0|+ γ||w||∞,∀t ≥ t0 ≥ 0. (7)

3 Main Results

We next present the main results that can be used to conclude exponential-DISS and exponential-ISS

of system (1) via its weak, strong and partial strong averages. The proofs of Theorem 2 and 3 are

omitted as they are nearly identical to the proof of Theorem 1. The proof of Theorem 1 and the

technical lemma are given in the appendix.
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Assumption 1 Consider the weak (strong) average ẏ = Aavy + Bavw to system (1), suppose there

exist γa > 0 and a symmetric positive definite constant matrix P such that there exist positive real

numbers c1, c2, and the quadratic Lyapunov function V = yTPy satisfying

c1|y|2 ≤ V (y) ≤ c2|y|2,
dV

dy
(y) (Ay +Bw) ≤ −|y|2 + γa|w|2 ∀y, w. (8)

Remark 4 If Assumptions 1 holds, then the system ẏ = Aavy+Bavw is exponentially ISS. From [10],

for a given quadratic Lyapunov function V there exist positive real numbers K,λ and γ satisfying

K =
√

c2
c1

, λ = 1
2c2

and γ =
√

c2γa

c1
such that (7) holds. Note in Assumption 1, the constant matrix P

can be calculated through the Lyapunov matrix equation ATavP + PAav = −I, and then c1 = λmin(P )

and c2 = λmax(P ).

Theorem 1 Suppose that the weak average of system (1) exists and satisfies Assumption 1. Then,

for any δ > 0 there exists ε∗ > 0 and for all ε ∈ (0, ε∗), w, ẇ ∈ L∞ and x0 := x(t0) ∈ Rn, the solution

of system (1) satisfies:

|x(t)| ≤ (K + δ) exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ + δ||ẇ||∞ ∀t ≥ t0 ≥ 0. (9)

where positive constants K,λ, γ come from Remark 4. Thus, the system (1) is exponentially derivative

input-to-state stable (DISS) uniformly in small ε.

Remark 5 The results in Theorem 1 can be defined as a stronger exponential version of the definition

of DISS in [11]. The system ẋ = fa(t, x, w) is said to be DISS if there exists β ∈ KL, and some class-K

functions γ̃0 and γ̃1 such that, for each w, ẇ ∈ L∞ and each x0 := x(t0) ∈ Rn, solutions of the system

starting at (x0, t0) exists for all t ≥ t0 and satisfies

|x(t)| ≤ β(|x0|, t− t0) + γ̃0(||w||) + γ̃1(||ẇ||).

Note that our conclusion in Theorem 1 yields a stronger condition, where γ̃0(s) = (γ + δ)s and

γ̃1(s) = δs, γ is positive constant and δ is arbitrary small positive real number.

Theorem 2 Suppose that the strong average of system (1) exists and satisfies Assumption 1. Then,

for any δ > 0 there exists ε∗ > 0 and for all ε ∈ (0, ε∗), w ∈ L∞ and x0 := x(t0) ∈ Rn, the solution

of system (1) satisfies:

|x(t)| ≤ (K + δ) exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ ∀t ≥ t0 ≥ 0, (10)

where positive constants K,λ, γ come from Remark 4. Thus, the system (1) is exponentially ISS

uniformly in small ε.
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For system (2), we assume that its partial strong average satisfies the following assumption.

Assumption 2 Consider the partial strong average ẏ = Aavy+Bρ2(t,ε)w to system (2), suppose there

exist positive real numbers ε∗, γa, c1, c2, and a continuously differentiable function V (t, y) such that

for all ε ∈ (0, ε∗), the following holds:

c1|y|2 ≤ V (t, y) ≤ c2|y|2,
∂V

∂t
(t, y) +

∂V

∂y
(t, y)

(
Ay +Bρ2( t

ε )w
)
≤ −|y|2 + γa|w|2 ∀y, w. (11)

With Assumption 2 and noting that Remark 4 also holds under this assumption, we have the

following Theorem 3. Although this result applies to system (2), being a special case of system (2),

we can also obtain stronger conclusions of exponential ISS properties for the actual linear switched

system (1) when strong average does not exist (as opposed DISS which is a conclusion of Theorem 1)

with the notion of partial strong average.

Theorem 3 Suppose that the partial strong average of system (2) exists and satisfies Assumption 2.

Then, for any δ > 0 there exists ε∗ > 0 and for all ε ∈ (0, ε∗), w ∈ L∞ and x0 ∈ Rn, the solution of

system (2) satisfies:

|x(t)| ≤ (K + δ) exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ ∀t ≥ t0 ≥ 0. (12)

where positive constants K,λ, γ come from Remark 4. Thus, the system (2) is exponentially ISS

uniformly in small ε.

We have stated that exponential ISS of strong or partial strong average implies the actual system

is exponentially ISS when the parameter ε is very small. Moreover, the linear ISS gain of the original

system converges to the estimated linear ISS gain of its strong or partial strong average obtained via its

Lyapunov function. On the other hand, it is impossible to prove this result for weak averages without

the assumption that the disturbances are absolutely continuous. We revisit Example 1 to show that

the weak average system is exponentially ISS, while the actual switched system is also exponentially

ISS but with a larger linear gain. Note that the actual system coincides with its partial strong average

in this example.

Example 1 (continued): Let the switching signal be the same as Example 1. Let A1 = A2 = −0.5,

B1 = 1, B2 = −1. Note that the weak average of system (1) is disturbance free and it is uniformly

globally exponentially stable. In other words, it is exponentially ISS with zero disturbance gain. Now

we consider a bounded disturbance for the actual system and we show that its linear gain can not

converge to zero. Consider the following input with a constant c > 0:

w(t) = c when ρ(t) = 1, w(t) = −c when ρ(t) = 2. (13)
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Then, the actual system with the given disturbance evolves like ẋ = −0.5x + c, and the solution of

which satisfies |x(t)| = exp(−0.5(t − t0))|x0| + 2c. As ||w||∞ = c we get the linear gain of the actual

system is lower bounded by 2, which is much lager than the ISS gain of its weak average. Hence, the

results of Theorem 1 can be applied only when ẇ ∈ L∞ is satisfied. In contrast, with the notion of

partial strong average, we can get stronger conclusions such as exponential ISS of the actual system

without requiring ẇ ∈ L∞.

4 Cascaded Fast Switching Systems

The weak average is quite useful for analysis of stability properties of several classes of time-varying

interconnected systems, where the input of one subsystem is the output of another subsystem. In

particular, it is an important motivation for use of weak average in analysis of ISS of time-varying

switched cascaded systems. Next, we will present a corollary that can be derived from Theorem 1 for

the following cascaded switched system:

ξ̇ = Aρ( t
ε )ξ +Bρ( t

ε )η η̇ = Cρ( t
ε )η, (14)

where ξ ∈ Rn1 , η ∈ Rn2 .

Corollary 1 Suppose that the weak average of ξ-subsystem exists and is exponentially ISS with respect

to η, and the average of η-subsystem is exponentially stable, then there exists a ε∗ > 0 such that for

all ε ∈ (0, ε∗), the system (14) is exponentially stable uniformly in ε.

Note that to get the exponential stability of the cascade, the ξ-subsystem does not have to be

uniformly exponentially ISS with respect to η and instead we can use the exponential DISS property

that was concluded in Theorem 1.

Example 2 Consider the switched cascaded system

ξ̇ = −0.5ξ + kρ( t
ε )η η̇ = −

(
2− kρ( t

ε )

)
η, (15)

where switching signal ρ(·) is the same as Example 1. Let k1 = 1 and k2 = −1. The weak average

of the ξ-subsystem (when η is regarded as the input) was shown in Example 1 to be ISS with zero

gain. Note also that the average of η-subsystem is exponentially stable and hence from Corollary 1,

we conclude that the cascaded system (15) is exponentially stable.

Remark 6 Related results were presented in [7] where L2 stability of rapidly switching linear systems

was considered. In particular, [7] shows that if the input matrix B does not switch, the L2 gain of

the actual time varying switched system is bounded by the L2 gain of its average as the switching rate
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is increased. We consider a different stability property (ISS as apposed to L2 stability), and we get

stronger conclusion that the linear ISS gain can be recovered for linear switched systems that allow

for strong averages and partial strong averages (see Theorems 2 and 3). Moreover, [7] shows via an

example that if the input matrix B switches, then the L2 gain of the actual switched system may not

be bounded by the L2 gain of its average when the switching rate increases. On the other hand, we

show in Theorem 1 that the ISS gain of the actual system also can be recovered by its weak average

(note that δ in (9) can be arbitrarily small when ε is sufficiently small) if we restrict the derivatives

of disturbances to be uniformly bounded. We also show that the linear ISS gain of the actual system

converges to the ISS gain of its partial strong average without requiring the derivatives of disturbances

to be bounded in Theorem 3.

5 Conclusions

ISS properties of linear rapidly switching systems with disturbances via the averaging method were

investigated. With the notions of strong and weak averages pioneered in [1] and partial strong average

that was proposed in the present paper, several averaging results were derived. We proved that

exponential ISS of the strong and the partial strong average system implies exponential ISS for the

actual linear switched system with their linear gains converging to each other as the parameter is

reduced. Moreover, exponential ISS of the weak average guarantees an appropriate DISS property for

the actual system. We emphasize that one contribution of this paper is a systematic use of strong,

partial strong and weak averages for switched systems with disturbances that we believe will be very

useful in a range of other averaging questions for switched systems.
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Appendix

We start from the technical lemma that would be useful for proving Theorem 1.

Lemma 1 Suppose that the weak average of system (1) exists and satisfies Assumption 1 with Lya-

punov function V and positive constants c1, c2 and γa. Then, for any δ̃ ∈ (0, 1) there exists τ̃∗ > 0 such

that, for each τ ∈ (0, τ̃∗) there exist ε∗ > 0 and an increasing sequence of times ti(i ∈ N) : ti+1− ti ≤ τ

with ti → ∞ as i → ∞, such that for all ti ≥ t0, ε ∈ (0, ε∗), w, ẇ ∈ L∞ and x0 := x(t0) ∈ Rn, the

solution of system (1) satisfies:

V (x(ti+1))− V (x(ti))
τ

≤ −
(

1− δ̃
)
|x(ti)|2 +

(
γa + δ̃

)
||w||2∞ + δ̃||ẇ||2∞. (16)

Proof of Lemma 1: Let a positive real number δ̃ < 1 be given. Let the quadratic Lyapunov function

V and positive constants c1, c2 and γa come from Assumption 1. Let k1, k2, T
∗ > 0 and σ1, σ2 ∈ L

come from the definition of average for matrices Aρ and Bρ. In preparation for defining ε∗, let T̃1 ≥ T ∗

and T̃2 ≥ T ∗ satisfying σ1(T̃1) ≤ δ̃
8k1c2

, σ2(T̃2) ≤ δ̃
8k2c2

, and define T̃ = max{T̃1, T̃2}. Let a strictly

positive real number am = maxt≥t0{|Aρ(t)|, |Bρ(t)|} where | · | denotes the matrix norm induced by

the vector norm. Let τ1 satisfies τ1 ≤ δ̃
8c2am

and τ2 > 0 be such that for the given δ̃, for any ti ≥ t0

and positive constant k̃ the following holds: (s− ti) ∈ [0, τ2] ⇒ k̃(s− ti) exp(2am(s− ti)) ≤ δ̃. Then

define τ̃∗ := min{τ1, τ2}. For all τ ∈ (0, τ̃∗), let ε∗ :=
{
τ
T̃

}
, and ti = t0 + iεT̃ for all ε ∈ (0, ε∗) and

i ∈ N. From the definition of ε∗, we have ti+1 − ti = εT̃ ≤ τ . Letting x(t) := x(t, ti) and applying the
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Lyapunov candidate function V in Assumption 1 to system (1) for all t ∈ [ti, ti+1], it follows that

∂V

∂x
(x(t)){Aρ( t

ε )x(t) +Bρ( t
ε )w(t)} (17)

=
∂V

∂x
(x(ti)){Aavx(ti) +Bavw(t)} − ∂V

∂x
(x(ti)){Bavw(t)−Bavw(ti)}

−∂V
∂x

(x(ti)){Aavx(ti) +Bavw(ti)}+
∂V

∂x
(x(ti)){Aρ( t

ε )x(ti) +Bρ( t
ε )w(ti)}

+
∂V

∂x
(x(t)){Aρ( t

ε )x(t) +Bρ( t
ε )w(t)} − ∂V

∂x
(x(ti)){Aρ( t

ε )x(ti) +Bρ( t
ε )w(ti)}.

Integrating both sides of the inequality along the solution of x(t) over the interval [ti, ti+1] and with

the fact
∣∣∂V
∂x (x(ti))

∣∣ ≤ 2c2|x(ti)|, we get

V (x(ti+1))− V (x(ti))

εT̃
≤ 1

εT̃

∫ ti+1

ti

∂V

∂x
(x(ti)){Aavx(ti) +Bavw(s)}ds︸ ︷︷ ︸

1

+
2c2|x(ti)|

εT̃

∣∣∣∣∫ ti+1

ti

Bav(w(s)− w(ti))ds

∣∣∣∣︸ ︷︷ ︸
2

+
2c2|x(ti)|

εT̃

{∣∣∣∣∫ ti+1

ti

{Aav −Aρ( s
ε
)}x(ti)ds

∣∣∣∣+

∣∣∣∣∫ ti+1

ti

{Bav −Bρ( s
ε
)}w(ti)ds

∣∣∣∣}︸ ︷︷ ︸
3

(18)

+
1

εT̃

∣∣∣∣∫ ti+1

ti

{
∂V

∂x
(x(s))Aρ( s

ε
)x(s) +

∂V

∂x
(x(s))Bρ( s

ε
)w(s)− ∂V

∂x
(x(ti))

(
Aρ( s

ε
)x(ti) +Bρ( s

ε
)w(ti)

)}
ds

∣∣∣∣︸ ︷︷ ︸
4

We now turn to bounding each of the terms on the right-hand side of (18), and the inequality 2ab ≤

a2 + b2 is utilized in the following proof.

1. From Assumption 1, it follows that the term 1 is bounded by

1

εT̃

∫ ti+1
ti
{−|x(ti)|2 + γa|w(s)|2}ds ≤ −|x(ti)|2 + γa||w||2∞.

2. With the definition of τ , we have for all t ∈ [ti, ti+1] that term 2 is bounded by

2c2amτ |x(ti)| · ||ẇ||∞ ≤
δ̃

8
(|x(ti)|2 + ||ẇ||2∞).

3. Setting s = εν and considering Aρ( s
ε ), Bρ( s

ε ) and the average definition for matrices, we have that

term 3 can be bounded by

2c2|x(ti)|

{∣∣∣∣∣Aav − 1

T̃

∫ ti
ε

+T̃

ti
ε

Aρ(ν)dν

∣∣∣∣∣ · |x(ti)|+

∣∣∣∣∣Bav − 1

T̃

∫ ti
ε

+T̃

ti
ε

Bρ(ν)dν

∣∣∣∣∣ · ||w||∞
}

≤ 2c2|x(ti)|{k1σ1(T̃ )|x(ti)|+ k2σ2(T̃ )||w||∞} ≤ 3δ̃
8
|x(ti)|2 + δ̃

8
||w||2∞.

Finally, term 4 is bounded by

∣∣∣∣∂V∂x (x(t))
{
Aρ( t

ε )(x(t)− x(ti)) +Bρ( t
ε )(w(t)− w(ti))

}∣∣∣∣+

∣∣∣∣{∂V∂x (x(t))− ∂V

∂x
(x(ti))

}
{Aρ( t

ε )x(ti) +Bρ( t
ε )w(ti)}

∣∣∣∣
≤ 2c2am {|x(t)| · (|x(t)− x(ti)|+ |w(t)− w(ti)|) + |x(t)− x(ti)|(|x(ti)|+ ||w||∞)}. (19)
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As for all t ∈ [ti, ti+1] and ti ≥ t0, the solution of system (1) satisfies x(t) = x(ti) +
∫ t
ti

(
Aρ( s

ε )x(s) +Bρ( s
ε )w(s)

)
ds.

With the definition of am, it is obvious that for all t ∈ [ti, ti+1]

|x(t)| ≤ exp(amτ)|x(ti)|+ (exp(amτ)− 1)||w||∞. (20)

Noting |w(t) − w(ti)| ≤ ||ẇ||∞τ and |x(t) − x(ti)| ≤ amτ(|x(t)| + ||w||∞), it follows that the inequality (19)

is bounded by 2τ exp(2amτ)c2{5a2
m(|x(ti)|2 + ||w||2∞) + am||ẇ||2∞}. Letting k̃ := 4c2(10a2

m + am), noting the

definition of τ2 and k̃ ≥ 4c2{5a2m(|x(ti)|2+||w||2∞)+am||ẇ||2∞}
max{|x(ti)|2,||w||2∞,||ẇ||2∞}

holds for all x(ti) and w , it follows that term 4 is

bounded by δ̃
2
(|x(ti)|2 + ||w||2∞+ ||ẇ||2∞) for all τ ∈ (0, τ̃∗). Combining the upper bound of four terms in (18),

we complete the proof:

V (x(ti+1))− V (x(ti))

τ
≤ −

(
1− δ̃

)
|x(ti)|2 +

(
γa +

5δ̃

8

)
||w||2∞ +

5δ̃

8
||ẇ||2∞

≤ −
(

1− δ̃
)
|x(ti)|2 +

(
γa + δ̃

)
||w||2∞ + δ̃||ẇ||2∞.

Proof of Theorem 1: Let the quadratic Lyapunov function V and positive constants c1, c2 and γa come from

Assumption 1, K,λ and γ come from Remark 4. Given any 0 < δ̃ < 1, τ̃∗ is then determined from Lemma 1

by δ̃. Let am be the same as the proof of Lemma 1 and c := 1 − δ̃ > 0. Let τ3 = c2
c

and τ∗ = min{τ̃∗, τ3},

then we have 0 <
(

1− cτ
c2

)
< 1 when τ ∈ (0, τ∗). Let ε∗ be determined by τ from Lemma 1, and the proof is

followed for all ε ∈ (0, ε∗). For preparing the definition of δ, let m := 1− cτ
c2
, µ :=

√
τ

c1(1−m)
. Then, let

δ1 = (exp(amτ)− 1)(γ +K + 1) + exp(amτ)

γ
√

δ̃

1− δ̃
+ µ

√
δ̃

 , (21)

δ2 =
δ̃

2c2
, δ3 =

(
exp

(
2τ

(
am + λ− δ̃

2c2

))
− 1

)
K, δ := max{δ1, δ2, δ3, δ̃}.

With am defined above, for all t ≥ t0, solutions of system (1) satisfy |x(t)| ≤ exp(am(t− t0))|x0|+ (exp(am(t−

t0))− 1)||w||∞, and then there exists a ti0 such that ti0 − t0 ≤ τ implies

|x(ti0)| ≤ exp(amτ)|x0|+ (exp(amτ)− 1)||w||∞. (22)

From Lemma 1, for all ε ∈ (0, ε∗) and any ti0 satisfying ti0 − t0 ≤ τ and ti0+k − ti0+k−1 ≤ τ , ∀k ∈ N, we have

V (x(ti0+1))−V (x(ti0 ))

τ
≤ −c|x(ti0)|2 +

(
γa + δ̃

)
||w||2∞ + δ̃||ẇ||2∞.

Using V (x) ≤ c2|x|2 and noting m = 1− cτ
c2

, it follows that

V (x(ti0+1)) ≤ mV (x(ti0)) + τ
(
γa + δ̃

)
||w||2∞ + τ δ̃||ẇ||2∞.

By repeating this argument, and using (1− z)n ≤ exp(−nz), ∀z ∈ (0, 1), we have ∀n ∈ N

V (x(ti0+n)) ≤ mnV (x(ti0)) +
∑n
k=1m

k−1τ(γa + δ̃)||w||2∞ +
∑n
k=1m

k−1τ δ̃||ẇ||2∞

≤ exp
(
− cτn

c2

)
V (x(ti0)) + τ(γa+δ̃)

(1−m)
||w||2∞ + τδ̃

(1−m)
||ẇ||2∞.
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From c1|x|2 ≤ V (x) ≤ c2|x|2, we know that

|x(ti0+n)|2 ≤ c2
c1

exp

(
−cτn
c2

)
|x(ti0)|2 +

τ(γa + δ̃)

c1(1−m)
||w||2∞ +

τ δ̃

c1(1−m)
||ẇ||2∞.

With the definition of µ and K, and noting ti0+n − ti0 ≤ nτ , it follows that

|x(ti0+n)| ≤ K exp
(
− c

2c2
(ti0+n − ti0)

)
|x(ti0)|+ µ

(√
γa +

√
δ̃
)
||w||∞ + µ

√
δ̃||ẇ||∞. (23)

Letting λ̄ = c
2c2

, and by repeating the same argument, one knows that for every j ∈ N

|x(ti0+jn)| ≤ K exp
(
−λ̄(ti0+jn − ti0)

)
|x(ti0)|+ µ

(√
γa +

√
δ̃
)
||w||∞ + µ

√
δ̃||ẇ||∞. (24)

For every t ≥ ti0 , there exist j ∈ N such that t ∈ [ti0+jn, ti0+jn+1). While (24) gives the evolution of the flow

at times ti0+jn, ∀j ∈ N, but gives no information about the flow between the times ti0+jn. Considering (20),

it follows that |x(t)| ≤ exp(amτ)|x(ti0+jn)| + (exp(amτ) − 1)||w||∞, ∀t ∈ [ti0+jn, ti0+jn+1). Noting (24), it

follows that for all t ≥ ti0 , the solution of system (1) satisfies

|x(t)| ≤ exp(amτ)K exp(−λ̄(ti0+jn − ti0))|x(ti0)|+ (exp(amτ)− 1)||w||∞ (25)

+µ exp(amτ)
√
δ̃||ẇ||∞ + µ exp(amτ)

(√
γa +

√
δ̃
)
||w||∞

≤ exp((am + λ̄)τ)K exp
(
−λ̄(t− ti0)

)
|x(ti0)|+ µ exp(amτ)

√
δ̃||ẇ||∞

+ (exp(amτ)− 1) ||w||∞ + µ exp(amτ)
(√

γa +
√
δ̃
)
||w||∞.

With γ =
√

c2γa
c1

, the definitions of m and δ, we have µ
√
γa =

√
c2γa

c1(1−δ̃)
= γ ·

√
1 + δ̃

1−δ̃ and

µ exp(amτ)
(√

γa +
√
δ̃
)

+ (exp(amτ)− 1)(K + 1)

≤ exp(amτ)
(
γ + γ

√
δ̃

1−δ̃ + µ
√
δ̃
)

+ (exp(amτ)− 1)(K + 1) ≤ γ + δ. (26)

Considering the definition of δ, we know that

exp(2(am + λ̄)τ)K = exp

(
2

(
am + λ− δ̃

2c2

)
τ

)
K ≤ K + δ. (27)

Then, combining λ̄ = 1−δ̃
2c2
≥ λ− δ, (21), (22) and (26) into (25), the following completes the proof:

|x(t)| ≤ exp(2(am + λ̄)τ)K exp
(
−λ̄(t− t0)

)
|x0|+ µ exp(amτ)

(√
γa +

√
δ̃
)
||w||∞

+ (exp(amτ)− 1) (K + 1)||w||∞ + exp(amτ)µ
√
δ̃||ẇ||∞

≤ (K + δ)(exp(−(λ− δ)(t− t0))|x0|+ (γ + δ)||w||∞ + δ||ẇ||∞
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